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A wide range of engineering structures, such as aircraft fuselages or ship hulls have as

the foundation a shell orthogonally strengthened by two sets of stiffeners. Solution of

the task related to determining the vibrations of such complicated structures requires

an application of special methods which permit accounting for the interaction between

the shell and the two sets of discrete stiffeners correctly. The present work proposes an

effective method of predicting the vibrations of a finite orthogonally stiffened structure

as a part of an infinite one when the edge conditions permit. The prediction method

proposed is based on the method of space-harmonic expansions when the shell

displacements and forces are presented in the form of special double trigonometric

series. The method allows the interconnection of all three components of displacement

and rotation of the shell and the stiffeners to be taken into account. The vibration

velocity of the construction is determined directly without a need for solving the task of

eigen-values first. The vibration shapes are broken into a large number of non-

interacting groups of shapes. The solution reduces to a system of equations relating to

the generalized reactions at supports. All this allows predictions to be made for large

parts of the investigated construction over practically the whole frequency range of

sound.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A shell or a panel regularly strengthened by stiffeners in two orthogonal directions is the foundation of a wide range of
engineering structures and in particular of aircraft fuselages. A great number of works are devoted to vibrations of stiffened
plates, shells and to excitation of periodic structures and are covered [1–4] and in recent publications [5–8]. In the majority
of published works one-dimensional or quasi one-dimensional systems stiffened in only one direction are considered.
Unfortunately, the number of works where stiffening in two directions is investigated and which are of prime practical
interests is rather limited.

According to overview [3], analytical methods that can be used for solving the two-dimensional tasks can be separated
into three methods: receptance method, transfer-matrices method and the method of space-harmonics. The receptance
method is a dynamic-flexibility technique, which allows vibrations of the non-regular stiffened structure to be determined
directly and the solution in this case is presented in the form of usual double trigonometric series. This method was used to
determine the vibrations and the sound transmission loss of an orthogonally stiffened curved panel excited by sound and
pressure-fluctuation fields [6]. However, in the expressions of that work the interaction between the panel and the
All rights reserved.
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stiffeners is taken into account only through normal displacements. Moreover, prediction results for a frame-stringer
stiffened panel had not been demonstrated because of ‘‘excessive computational time’’.

The receptance method is efficient for solving the task for structures with non-uniformly spaced stiffeners. For regular
structures it is more reasonable to use special methods, such as the transfer-matrices and space-harmonics methods, that
are based on Floquet’s principle (sometimes called Bloch’s theorem). According to this principle, the eigen-functions of
periodic systems can always be presented in the form of a product of some function with the same period as that of the
system and the plane harmonic wave function.

The solution for stiffened-structure vibrations, when the structure consists of a number of identical spans or cells, is
reduced by the method of transfer matrices to considering only one span or cell. However this solution is usually derived in
the form of an implicit connection between propagation constants and frequency and this makes a search for eigen-
frequencies and eigen-functions difficult. This method becomes too laborious at high frequencies when it is necessary to
account for a large number of vibration eigen-functions. In the present work the method of space-harmonic expansions is
used. According to this method, vibrations of the infinite, orthogonally stiffened plate with distances between the stiffeners
dr, ds under plane wave excitation exp iðot þ ax=dr

þ by=ds
Þ are presented in the form of special space-harmonic series [3]

wðx; y; tÞ ¼
Xþ1

n¼�1

Xþ1
m¼�1

Wmn exp iðot þ kamxþ kbnyÞ, (1)

kam ¼ ðaþ 2pmÞ=dr ; kbn ¼ ðbþ 2pnÞ=ds. (2)

Here all the harmonic shapes of vibrations with similar phase steps a, b on the cell length and width are summed up but
the other shapes take no part in vibrations under such excitation.

The present work shows how the system of equations for the unknown amplitude Wnm of the plate and the shell can be
reduced to a system related to sufficiently small number of generalized stiffener responses. The proposed method is
described in the first part of the paper by an example of an infinite thin plate strengthened by stiffeners, elastic in bending
and absolutely compliant in twisting. In the second part of the paper this method is used for solving the task on vibrations
of a finite orthogonally stiffened cylindrical shell. The method can be used in those cases when the edge conditions for the
finite structure allows it to be considered as part of an infinite structure. Here a shell is considered, finite in both directions
and simply supported on the edges with the stiffeners split in half.

The method allows all three displacement components and the rotation of the shell and the stiffeners to be taken into
account. The equations of the shell and of the stiffeners are written in a general matrix form and this allows an easy use of
any equations of the structural element dynamics. The vibration shapes of the shell and stiffeners are broken into non-
interacting groups. The solution reduces to an equation system regarding a substantially smaller number of the generalized
responses of stiffeners and this makes it possible to account for a very large number of shapes in each group. All this allows
a prediction to be made of vibrations of large parts of the structure under investigation over practically the whole sound
frequency range.

2. Prediction relations for infinite orthogonally stiffened plate

Consider a thin infinite plate regularly strengthened by stringers along the x-axis with a step of ds and by frames with a
step of dr along the y-axis (Fig. 1). The stiffeners interact with the plate along orthogonal lines x ¼ prdr , y ¼ psds, where pr,
ps are the numbers of frames and stringers.

The plate has normal displacements w which are determined by the following equation:

ðDðq2=qx2 þ q2=qy2Þ2 �o2mÞwðx; yÞ ¼ q� qs � qr , (3)

where m is the surface mass, D the cylindrical rigidity, qðx; yÞ, qsðx; yÞ, qrðx; yÞ are the external surface forces, stringer and
frame response forces, respectively. Here and below time multiplier exp(iot) is omitted. Normal displacements of stringer
Fig. 1. Orthogonally stiffened infinite plate.



ARTICLE IN PRESS

B.M. Efimtsov, L.A. Lazarev / Journal of Sound and Vibration 327 (2009) 41–54 43
ws with number ps are described with the use of the following equation:

ðEsIsq4=qx4 �o2msÞwsðx; psÞ ¼ qdsðx; psÞ, (4)

where ms, EsIs are the mass per unit length and flexural rigidity of stringers. Upper index d serves for distinguishing the
discrete force in one direction (qds(x,ps)) from the surface force (qs(x,y)).

The frame displacements wr with number pr are described as follows:

ðErIrq4=qy4 �o2mrÞwrðpr ; yÞ ¼ qdrðpr ; yÞ, (5)

where mr, ErIr are the mass per unit length and flexural rigidity of the frames.
Let the stringer displacements ws and frame displacements wr be connected with the plate only through the normal

displacements

wsðx;psÞ ¼ wðx;psds
Þ; wrðpr ; yÞ ¼ wðprdr ; yÞ. (6)

Present the displacements in the form of an integral over the phases and of a special double series for each pair of phases

wðx; yÞ ¼

Z p

a¼�p

Z p

b¼�p

X1
n¼�1

X1
m¼�1

Wmn exp iðkmxþ knyÞ

" #
dadb,

km ¼ ðaþ 2pmÞ=dr ; kn ¼ ðbþ 2pnÞ=ds; m � fa;mg; n � fb;ng. (7)

Here Wmn are the generalized plate displacements. The double series in square brackets corresponds to the series in Eq. (1)
and defines the contribution of one independent shape group to the overall plate displacement. Expression (7) can be
considered as a special kind of Fourier integral representation.

Now the forces acting on plate (q�qs
�qr) will be presented in a similar way. The generalized forces are divided into

external generalized forces Qmn, generalized responses of stringers �Qs
mn and responses of frames �Qr

mn:

q� qs � qr ¼

Z p

a¼�p

Z p

b¼�p

X1
n¼�1

X1
m¼�1

ðQmn � Qs
mn � Qr

mnÞ exp iðkmxþ knyÞ

" #
dadb. (8)

From the plate vibration Eq. (3) the connection between the generalized plate displacements Wmn and the sum of the
generalized forces acting on it follows:

KmnWmn ¼ Qmn � Qr
mn � Qs

mn; Kmn ¼ Dðk2
m þ k2

nÞ
2 �o2m. (9)

The plate vibration shapes from one group a, b and with one longitudinal index m have an identical magnitude for all the
indices n on stringer lines y ¼ psds:

exp iðkmxþ knpsds
Þ ¼ exp iðkmxþ bpsÞ; 8n. (10)

Expand the displacements of all the stringers in terms of functions exp i(kmx+bps), continuous along x and discrete along y:

wsðx; psÞ ¼

Z p

a¼�p

Z p

b¼�p

X1
m¼�1

Ws
bm exp iðkmxþ bpsÞ

" #
dadb. (11)

Here Ws
bm are the generalized stringer amplitudes.

Expand also the forces qds, discrete along y, that affect the stringers from the plate:

qdsðx;psÞ ¼ ds
Z p

a¼�p

Z p

b¼�p

X1
m¼�1

Qds
bm exp iðkmxþ bpsÞ

" #
dadb. (12)

Here a step of stringer arrangement ds is added on the right so that the generalized force Qds
bm has the dimensionality of

surface force.
Along the line of frames the plate vibration shapes of one group also have identical magnitudes independently of

longitudinal index m:

exp iðkmprdr
þ knyÞ ¼ exp iðapr þ knyÞ; 8m. (13)

The vibrations of all the frames and of the force qdrðpr ; yÞ acting on them from the plate, can be presented as the expansion
in terms of exp iðapr þ knyÞ:

wrðpr ; yÞ ¼

Z p

a¼�p

Z p

b¼�p

X1
n¼�1

Wr
an exp iðapr þ knyÞ

" #
dadb, (14)

qdrðpr ; yÞ ¼ dr
Z p

a¼�p

Z p

b¼�p

X1
n¼�1

Qdr
an exp iðapr þ knyÞ

" #
dadb. (15)
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From the stringer vibration Eq. (4), the connection between the generalized displacements Wr
an and the generalized forces

Qdr
an follows:

Ks
mWs

bm ¼ Qds
bm; Ks

m � ðE
sIsk4

m �o
2msÞ=ds. (16)

Similar equalities can be obtained for the frames:

Kr
nWr

an ¼ Qdr
an; Kr

n � ðE
rIrk4

n �o
2mrÞ=dr . (17)

It follows from the equality of stiffener vibration shapes and the plate shapes along the stiffeners (Eqs. (6), (10), (13)) that
the generalized stringer displacements are equal to the sum of all the generalized plate displacements with the same
indices m;a;b and the generalized frame displacements are equal to the sum of the generalized plate displacements with
the same indices n;a;b:

Ws
bm ¼

Xþ1
n¼�1

Wmn; Wr
an ¼

Xþ1
m¼�1

Wmn ðm � fa;mg;n � fb;ngÞ. (18)

Now connect the generalized forces acting on the stiffeners Qds
bm and Qdr

an with the generalized stiffeners responses acting
on the plate Qs

mn;Q
r
mn. The regular sequence of delta-functions dðy� psds

Þwith the arrangement step ds and the phase step
b can be replaced by a sum of harmonic functions with the same phase step:

ds
Xþ1

ps¼�1

expðibpsÞdðy� psds
Þ ¼

Xþ1
n¼�1

expðiðbþ 2pnÞy=ds
Þ ¼

Xþ1
n¼�1

expðiknyÞ (19)

Therefore the discrete forces along y (qs), acting on the plate from the stringers can be written as follows (see Eq. (12)):

qsðx; yÞ ¼
Xþ1

ps¼�1

qdsðx; psÞdðy� psds
Þ

¼ ds
Z p

a¼�p

Z p

b¼�p

X1
m¼�1

Qds
bm

Xþ1
ps¼�1

exp iðkmxþ bpsÞdðy� psds
Þ

2
4

3
5dadb

¼

Z p

a¼�p

Z p

b¼�p

Xþ1
m¼�1

Xþ1
n¼�1

Qds
bm exp iðkmxþ knyÞ

" #
dadb. (20)

Comparing this expression with Eq. (8) for qs, we are assured that all the generalized stringer response forces Qs
nm with

identical indices m;a;b are equal to each other and are equal to the generalized force acting on the stringers Qds
bm:

Qs
nm ¼ Qds

bm; 8n. (21)

Similarly one can prove that the generalized frame response forces Qr
mn with identical indices n;a;b are equal to the

generalized force acting on the frames:

Qr
nm ¼ Qdr

an; 8m. (22)

Thus, for the group of the plate vibration shapes a closed system of Eqs. (9), (16)–(18), (21), (22) is obtained. Write them
with the phase indices a;b omitted:

Wmn ¼ ImnðQmn � Qds
m � Qdr

n Þ; Imn ¼ K�1
mn,

Ws
m ¼ Is

mQds
m ¼

X
n

Wmn; Is
m ¼ Ks�1

m ,

Wr
n ¼ Ir

nQdr
n ¼

X
m

Wmn; Ir
n ¼ Kr�1

n . (23)

Here the compliances Imn, Is
m, Ir

n are introduced for convenience. Eliminate the plate generalized displacements Wnm from
these equations by summing over m and n separately. As a result, the system of equations related to generalized forces Qds

m ,
Qdr

n acting on the stiffeners is obtained:

Is
m þ

X
n

Imn

 !
Qds

m þ
X

n

ImnQdr
n ¼

X
n

ImnQmn,

Ir
n þ

X
m

Imn

 !
Qdr

n þ
X
m

ImnQds
m ¼

X
m

ImnQmn. (24)
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The system can be rewritten in the matrix form:

A B

C D

� �
Q S

Q R

 !
¼

WS
e

WR
e

0
@

1
A,

Amm ¼ Is
m þ

X
n

Imn; Bmn ¼ Imn; Q S
m ¼ Qds

m ; WS
em ¼

X
n

ImnQmn,

Cnm ¼ Imn; Dnn ¼ Ir
n þ

X
m

Imn; Q R
n ¼ Qdr

n ; WR
en ¼

X
m

ImnQmn. (25)

Here A, D are the diagonal matrices; C ¼ BT, T is the transpose. Matrix equation (25) effectively resolved as follows:

Q R
¼ ðD� CðAÞ�1BÞ�1ðWR

e � CðAÞ�1WS
e Þ,

Q S
¼ ðAÞ�1ðWS

e � BQ R
Þ. (26)

Hence the stiffener responses Qds
m , Qdr

n are determined. Substituting them into the first expression in Eq. (23) resolves the
task of predicting amplitudes Wmn for one shape group of an infinite orthogonally stiffened plate. The total plate
displacements w(x,y) are obtained with integral (7).

In the case when the plate is strengthened by only one set of stiffeners, for example stringers, the independent groups
will consist of the shapes with the same phase constant b and the solution for them will be of the following form:

Wnm ¼ InmðQnm � Qds
m Þ; Qds

m ¼ Is
m þ

X
n

Inm

 !�1X
n

InmQnm; ðQ
dr
n � 0Þ. (27)

In this case index m means a continuous parameter.
In order to demonstrate the application of this method for determining the infinite stiffened plate vibrations, let us

consider the plate exited by a single acoustic plane wave. Let the plane wave with frequency o and amplitude P be falling on the
plate at some angle j between the plate plane and the wave vector and at angle y between x-axis and the wave vector
projection. The pressure acting on the plate presents the harmonic wave p ¼ A exp iofcosðjÞðcos ðyÞxþ sinðyÞyÞ=c þ tg. Here c

is the sound speed. The reaction of the medium from the sides of the plate is ignored for the sake of simplicity.
Here and in Section 4 the plate and rib parameters were chosen to be corresponding to the fuselage of a large passenger

aircraft. The cell with dimensions of dr
�ds
¼ 0.5�0.2m has the first eigen frequency 136 Hz. The loss tangent is taken to be

Z ¼ 0.03 (E ¼ E0(1+iZ)).
Fig. 2 shows the mean-square velocity of an infinite stiffened plate (solid line 1) excited by a plane wave in a wide

frequency range. The sound wave is impinging on the plate at angles j ¼ p/8, y ¼ p/4. The velocity is normalized by
velocity Vm at purely inertial behavior of the unstiffened plate. For comparison the curves for an orthotropic plate with
‘‘smeared’’ ribs (dotted line) and for an isotropic unstiffened plate (dash line) are presented. The single maxima for isotropic
or orthotropic plate models are explained by a coincidence of the wavenumber of the exiting field and the plate eigen-
wavenumber. At low frequencies the stiffened plate behaves like the orthotropic one with smeared ribs. At high frequencies
it behaves like the unstiffened one. The plate with discrete ribs manifests its highly resonance excitation at other
frequencies. The interaction of a large number of vibration shapes is a reason of such behavior. The stiffened plate curve
Fig. 2. Nondimensional mean-square velocity of the plate excited by a plane wave.
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approaches to the curve for unstiffened one when the stiffeners become weaker. Solid line 0.1 is obtained for ribs with
diminished cross-section sizes in 10 times.

3. Prediction relations for orthogonally stiffened cylindrical shell

Consider a part of the finite stiffened thin cylindrical shell of radius R, of length Lx and of width Ly (Fig. 3). Let it consist of
Nr spans with width dr between frames (Lx ¼ Nrdr). Each span consists of Ns cells with width ds between stringers
(Ly ¼ Nsds). The stiffeners are connected with the shell along the lines. The shell is freely supported on the edges. The
stiffeners split in half are left on the edges and take part in the deformation. This allows the finite shell to be considered as
part of a shell, infinite in both directions.

The shell displacements w(x, y) are determined by three components and are related to the distributed forces acting on
it through the equations of the shell vibrations, which can be written as follows:

Lw ¼ q� qs � qr ,

wðx; yÞ ¼ ðu;v;wÞT; qðx; yÞ ¼ ðqu; qv; qwÞ
T; qs;rðx; yÞ ¼ ðqs;r

u ; qs;r
v ; qs;r

w Þ
T, (28)

where L is the elasto-inertial differential matrix operator of the shell with dimensions of 3�3, T is the transpose, qðx; yÞ,
qsðx; yÞ, qrðx; yÞ are the vectors of the external forces, stringer and frame response forces, respectively.

Vibrations of a separate stringer are determined by three displacement components and by the rotation around x-axis
(ys) and depend on the three components of forces ðqds

u ; q
ds
v ; q

ds
w Þ and moment ðmds

y Þ, applied to the stringer:

Lsws ¼ qds,

wsðx; psÞ ¼ ðus;vs;ws; ysRÞT ; qdsðx; psÞ ¼ ðqds
u ; q

ds
v ; q

ds
w ;m

ds
y =RÞT, (29)

where Ls is the frequency-dependent elasto-inertial differential matrix operator of stringer with dimensions of 4� 4.
Owing to the insertion of radius R in force and displacement vectors, the matrix operator Ls is symmetric. Vibrations of a
separate frame can be written as follows:

Lrwr¼ qdr ,

wrðpr ; yÞ ¼ ður ;vr ;wr ; yrRÞT ; qdrðpr ; yÞ ¼ ðqdr
u ; q

dr
v ;q

dr
w ;m

dr
x =RÞT, (30)

where Lr is the frequency-dependent elasto-inertial differential matrix operator of frame.
The limited shell displacements and forces can be expanded in terms of special harmonic functions UmðxÞWnðyÞ

(multiplier exp(iot) is omitted everywhere, indices mn for vector components are also omitted here):

wðx; yÞ ¼
X
a;b

X1
m¼1

X1
n¼1

WmnUmðxÞWnðyÞ; Wmn ¼ ðU;V ;WÞ
T, (31)

q� qs � qr ¼
X
a;b

X1
m¼1

X1
n¼1

ðQ mn �Q s
mn � Q r

mnÞUmðxÞWnðyÞ,

Q mn ¼ ðQU ;QV ;QW Þ
T; Q s;r

mn ¼ ðQ
s;r
U ;Qs;r

V ;Qs;r
W Þ

T, (32)

UmðxÞ ¼

cosðkmxÞ

sinðkmxÞ

sinðkmxÞ

0
B@

1
CA; WnðyÞ ¼

sinðknyÞ

� cosðknyÞ

sinðknyÞ

0
B@

1
CA. (33)
Fig. 3. Regularly stiffened finite cylindrical shell.
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Here Wmn are the vectors of generalized displacements, Qmn, Q s
mn, Q r

mn are the vectors of the generalized external forces,
generalized stringer and frame response forces, respectively. In this paper the product of vectors ab � ða1b1; a2b2; a3b3Þ

T

means a product terms by terms. The functions (or vibration shapes) in Eq. (33) have three components, satisfy the edge
conditions and with properly defined component coefficients make up the unstiffened shell eigen-functions, that are not of
interest here.

The wavenumbers km, kn are non-negative and multiples of p/Lx, p/Ly, respectively. The finite shell is considered as a part
of an infinite shell. Any shape UmWn in Eq. (33) can be expressed as a sum of four exponential shapes with different signs
of wavenumbers 7km, 7kn. Hence, in contrast to the infinite-plate case, for the finite shell the independent shape groups
are composed by all shapes, not only the wavenumber difference (k1�k2), but also their sum (k1+k2) is a multiple of 2p/dr or
2p/ds.

The phase step a in the span between the frames can take only Nr+1 magnitudes and the phase step b in the cell
between the stringers takes only Ns+1 magnitudes:

a ¼ f0;p=Nr ;2p=Nr ; . . . ;pg,

b ¼ f0;p=Ns;2p=Ns; . . . ;pg. (34)

This means that there exist ðNr þ 1ÞðNs þ 1Þ independent groups of shapes. Sort the wavenumbers in any group in
ascending order:

kmdr
¼

2pðm� 1Þ ¼ f0;2p;4p; . . .g; a ¼ 0;

pm̃� ð�1Þma ¼ fa;2p� a;2pþ a; . . .g; 0oaop;

2pðm� 1Þ þ p ¼ fp;3p;5p; . . .g; a ¼ p;

8>><
>>:
m ¼ 1;2; . . . ; m̃ ¼ mþ ðð�1Þm � 1Þ=2 ¼ f0;2;2;4;4; . . .g,

knds
¼

2pðn� 1Þ; b ¼ 0;

pñ� ð�1Þnb; 0obop;
2pðn� 1Þ þ p; b ¼ p;

8><
>: n ¼ 1;2; . . . ; ñ ¼ nþ ðð�1Þn � 1Þ=2. (35)

Using expansions (31) and (32) and the equation for the shell (28), we get a relation between the generalized displacement
vectors and forces acting on the shell:

LðoÞUmðxÞWnðyÞ ¼ KmnðoÞUmðxÞWnðyÞ, (36)

Wmn ¼ ImnðQ mn �Q s
mn � Q r

mnÞ; Imn ¼ ðKmnÞ
�1, (37)

where Kmn is the matrix of frequency-dependent coefficients with dimensions of 3�3. In Appendix A the expressions for
matrices of coefficients Kmn, that were used in calculations, are presented, see Eq. (A.1). Imn is the compliancy matrix
inverse to Kmn.

Expand the displacements of all the stringers and the forces acting on them in terms of the following functions
satisfying the edge conditions:

wsðx; psÞ ¼
X
a;b

X1
m¼1

Ws
bmUs

mðxÞW
s
bðp

sÞ, (38)

qdsðx; psÞ ¼ ds
X
a;b

X1
m¼1

Qds
bmUs

mðxÞW
s
bðp

sÞ, (39)

Ws
bm ¼

Us

Vs

Ws

YsR

0
BBB@

1
CCCA; Qds

bm ¼

Qs
U

Qs
V

Qs
W

MsR�1

0
BBBB@

1
CCCCA; Us

mðxÞ ¼

cosðkmxÞ

sinðkmxÞ

sinðkmxÞ

sinðkmxÞ

0
BBBB@

1
CCCCA; Ws

bðp
sÞ ¼

sinðpsbÞ
� cosðpsbÞ

sinðpsbÞ
cosðpsbÞ

0
BBBB@

1
CCCCA. (40)

The first three components of function Us
m coincide with those of shell function Us

mðxÞ ¼ ðUmðxÞ
T; sinðkmxÞÞT. The discrete

function Ws
bðp

sÞ serves for correlating the vibrations of all the stringers with the shell vibrations in a group. Its first three
components coincide with those of the first in this group of shell functions on the stringer locations Ws

bðp
sÞ ¼

ðWb;n¼1ðp
sds
ÞT; cosðpsbÞÞT. In contrast to the shell in the case of considering the stringer, the summation in the group is

made only over index m. Using expansions (38)–(40) and Eq. (29), we get a connection between the generalized vectors of
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displacements and forces acting on the stringers:

LsðoÞUs
mðxÞ ¼ dsKs

mðoÞU
s
mðxÞ, (41)

Ws
bm ¼ Is

mQds
bm; Is

m ¼ ðK
s
mÞ
�1. (42)

Here Ks
m is the matrix of frequency-dependent coefficients with dimensions of 4� 4 for stringer, see Eq. (A.3). Is

m is the
compliancy matrix inverse to Ks

m.
Present the vibrations of all the frames in the form of the following expansion:

wrðpr ; yÞ ¼
X
ab

X1
n¼1

Wr
anUr

aðp
rÞWr

nðyÞ, (43)

qdrðpr ; yÞ ¼ dr
X
ab

X1
n¼1

Qdr
anUr

aðp
rÞWr

nðyÞ, (44)

Ur
aðp

rÞ ¼

cosðpraÞ
sinðpraÞ
sinðpraÞ
cosðpraÞ

0
BBBB@

1
CCCCA; Wr

nðyÞ ¼

sinðknyÞ

� cosðknyÞ

sinðknyÞ

sinðknyÞ

0
BBBB@

1
CCCCA. (45)

Note here, that Ur
aðp

rÞ ¼ ðUa;m¼1ðp
rdr
ÞT; cosðpraÞÞT, Wr

nðyÞ ¼ ðWnðyÞ
T; sinðknyÞÞT. Substitution of expansion (43) in frame-

vibration equation (30) leads to the relation between the generalized vectors of frame displacements and forces:

LrðoÞWr
nðyÞ ¼ drKr

nðoÞW
r
nðyÞ, (46)

Wr
an ¼ Ir

nQdr
an; Ir

n ¼ ðK
r
nÞ
�1. (47)

Here Kr
n is the matrix of coefficients for frame with dimensions of 4� 4, see Eq. (A.4). Ir

n is the matrix inverse to Kr
n.

We have considered the vibrations of the shell, the system of stringers and the system of frames separately. Now, in
order to obtain a unified system of equations, the displacements of the shell, the stringers and the frames must be
connected. The generalized stringer and frame displacements Ws

bm, Wr
an can be expressed through the shell displacements

Wmn with the help of special matrices En, Em of dimension 4�3, that are obtained in Appendix B, see Eqs. (B.5) and (B.7):

Ws
bm ¼

X
n

EnWmn; Wr
an ¼

X
m

EmWmn. (48)

The relation between the vector of generalized stringer responses Q s
mn and the forces Qds

bm can be expressed through the
special Fn matrix, that is also obtained in Appendix B. The relation between generalized frames responses Q r

mn and the
forces Qdr

an—through Fm matrix, see Eqs. (B.14) and (B.15):

Q s
mn ¼ FnQds

bm; Q r
mn ¼ FmQdr

an. (49)

Thus, we have obtained the closed system of Eqs. (37), (42), (47)–(49). They are rewritten, omitting the phase indices a, b
excluding the generalized displacements Ws

m, Wr
n and force responses Q s

mn, Q r
mn of the stiffeners in the following form:

Wmn ¼ ImnðQ mn � FnQds
m � FmQdr

n Þ,

Ir
nQdr

n ¼
X
m

EmWmn; Is
mQds

m ¼
X

n

EnWmn. (50)

Substituting the first equality in Eq. (50) into second and third we get a system of equations related to the generalized
forces acting on the stiffeners, which is more conveniently recorded in a matrix form:

A B

C D

� �
Q S

Q R

 !
¼

WS
e

WR
e

0
@

1
A,

Am0m0 ¼ Is
m þ

X
n

EnImnFn; Bm0n0 ¼ EnImnFm; Q S
m0 ¼ Qds

m ,

Cn0m0 ¼ EmImnFn; Dn0n0 ¼ Ir
n þ

X
m

EmImnFm; Q R
n0 ¼ Qdr;ab

n ,

WS
em0 ¼

X
n

EnImnQ mn; WR
en0 ¼

X
m

EmImnQ mn; m0 ¼ 4ðm� 1Þ þ f1;2;3;4g; n0 ¼ 4ðn� 1Þ þ f1;2;3;4g. (51)
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Here A, D are matrices with 4� 4-dimensional blocks on the diagonal, matrices B, C consist of 4� 4-dimensional blocks.
Vectors QS, QR, WS

e, WR
e consist of four-dimensional sub-vectors. Vectors WS

e, WR
e imply the generalized displacements of

absolutely compliant ribs on the plate. Formally the system of Eqs. (51) differs from the system (25) for the infinite
stiffened plate only by additional matrix multipliers Em, En, Fm, Fn.

We restrict ourselves to a certain number of shapes in group ðn � nmax;m � mmaxÞ. Then the system of Eqs. (51) can be
resolved as

Q R
¼ ðD� CðAÞ�1BÞ�1ðWR

e � CðAÞ�1WS
eÞ,

Q S
¼ ðAÞ�1ðWS

e � BQ R
Þ. (52)

Substitution of the obtained stiffener responses into Eq. (50) gives the sought for vectors of generalized shell displacements
Wmn.

From expression (51), as a special case, the solution for the shell stiffened by only one set of stiffeners, for example
stringers, can be directly written down. The generalized shell displacements for one shape group with some phase constant
b are determined in this case as follows:

Wmn ¼ ImnðQ mn � FnQds
m Þ ðonly stringersÞ,

Qds
m ¼ Is

m þ
X

n

EnImnFn

 !�1X
n

EnImnQ mn. (53)

Here km ¼ pm/Lx in matrices Imn, Is
m.

Thus, the task related to vibrations of the orthogonally stiffened shell with accounting for the interconnection between
all the components of displacements and forces of the shell and of the regularly spaced stiffeners is solved. Note, that the
external force vectors q ¼ ðqu; qv; qwÞ

T have three components and hence one can predict the shell vibrations caused not
only by the normal force fields, but also caused by fields of forces with arbitrary direction.

An additional benefit of the proposed method based on special harmonic expansions is the fact that the result of
vibration predictions is presented in the form of amplitudes of sinusoidal shapes. This makes it possible to proceed directly
to solving the tasks related to sound wave radiation or to internal acoustic mode excitation, using the methods of
predicting the internal noise, worked out earlier [7,8].
4. Examples of prediction of stiffened shell vibrations

Now we demonstrate an application of the vibration–calculation method using as an example a stiffened shell excited
by a point force. The point force produces a uniform picture of generalized forces in the whole wavenumber space.
Therefore such an action is convenient for testing the prediction program and determining the main properties of
excitation of the structure.
Fig. 4. An example of predicting the generalized displacements Wnm of nearly million shapes under point excitation at frequency of f ¼ 20 kHz.
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Fig. 5. Convergence of the prediction results with a growth of shape number, f ¼ 20 kHz.

Fig. 6. Excitation of the stiffened shell at frequency f ¼ 1000 Hz by a harmonic point force applied to the: (a) cell center, (b) stringer center and (c)

stiffener intersection.
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Fig. 7. Mean velocity of the shell excited by a point force q0 eiot applied to three different positions. V0 ¼ 2.24�10�3 m/s if q0 ¼ 1 N.
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To make the calculations, the structural parameters were chosen which correspond to a part of the fuselage of a large
passenger aircraft. Its radius is R ¼ 3 m, length Lx ¼ 8 m, corresponding to Ns

¼ 16 spans with length dr
¼ 0.5 m and its

width is Ly ¼ 12 m corresponding to Nr
¼ 60 cells in each span with ds

¼ 0.2 m. The loss tangent is taken to be Z ¼ 0.1 for
Figs. 4 and 6 and Z ¼ 0.03 for Figs. 5 and 7.

The number of shapes required for prediction was determined directly from the result of illustrative predictions of
displacement amplitudes. Fig. 4 presents an example of such a test prediction for the maximum of considered frequencies
(20 kHz) under point force excitation. A point force with coordinates x0 ¼ 3.75 m, y0 ¼ 4.3 m was applied to the cell center.
A quarter of the ellipse produced by the dominant shapes in Fig. 4 corresponds to the wavenumbers being determined from
the relation for traveling waves in the plate ðk2

x þ k2
y Þ

2 ¼ mo2=D. The prediction accounted for Nmax�Mmax ¼ 22Nr
�50Ns

¼

1320�800 ¼ 1056 000 of vibration shapes. The principal difficulty of the calculations relates to the (D�CA�1B) matrix
inversion. In this case all 1056 000 shapes are broken into (Nr+1)� (Ns+1) ¼ 17�61 groups, each of them consisting
maximum of 22�50 shapes. Matrix (D�CA�1B) has dimensions 88�88 (88 ¼ 4�22).

Another, more commonly used method of determining the sufficient number of shapes, consists in the investigation of
convergence of the prediction results with a growth of shape number. Fig. 5 illustrates the convergence of mean-square
velocity value for such a point force excitation. The ratio of the maximum number of shapes in two directions was
determined by the relation Nmax/MmaxELy/Lx. We can see, that the maximum indices of shapes must substantially exceed
the indices of dominating shapes pNmax=Lxb

ffiffi
½
p

4�mo2=D, pMmax=Lyb
ffiffi
½
p

4�mo2=D (Nmaxb780, Mmaxb520 in this case for
20 kHz) in order to get the reliable results.

Fig. 6a–c give an example of a snap-shot displacement prediction for such a piece of structure at frequency of 1000 Hz,
produced by a point force applied to the cell center, the stringer middle and a stiffener intersection. All three figures are
made with the same displacement scale. In the first case (Fig. 6a) an intensive excitation of the central and the neighboring
cells occurs. In the second case, when the force is applied to a stringer (Fig. 6b), an intensive wave propagation over the
stringers is observed. In the third case, when a force is applied to the intersection of a stringer and a frame (Fig. 6c), an
intensive wave propagation in all directions is observed, though the displacement amplitude is small.

Fig. 7 shows the frequency dependence of the rms-velocity of the shell vibrations in the frequency range 100–20 000 Hz
for the above three cases of excitation by a point force. The largest vibration velocity over the whole frequency range is
caused by the force applied to the cell center. The maximum is achieved at the frequency slightly greater than the
frequency of an isolated simply supported cell (136 Hz). The smallest vibrations are caused by the force applied to the
stiffener intersection. It should be noted that at the frequencies less than the frequency of an isolated stringer span
(440 Hz), the force applied to the intersection and to the middle of a stringer causes practically identical rms-velocities of
the shell.
4. Conclusion

The task related to forced vibrations of the cylindrical shell with an orthogonal system of stiffeners is solved with a
correct account for their discreteness and elasto-inertial properties. The solution which is compact and permits
determining all the components of construction vibration velocities directly under excitation by normal and tangential
forces is obtained. These components are presented in the form of special double trigonometric series. Such a presentation
of velocities substantially simplifies the solution of subsequent tasks related to acoustic radiation of panels and shells and
to forming the acoustic field inside a closed volume. Illustrative examples of the vibrations of framed shell modeling a large



ARTICLE IN PRESS

B.M. Efimtsov, L.A. Lazarev / Journal of Sound and Vibration 327 (2009) 41–5452
fragment of the aircraft fuselage section at point force excitation demonstrate a high efficiency of applying this method
over the whole sound frequency range.

Appendix A. Matrices of coefficients

The elasto-inertial operators of the shell and the stiffeners with rectangular cross-section according to Ref. [9] were
used. In all the expressions the following values are used: m, h, R, E, m are the shell surface mass, thickness, radius, Young’s
modulus, Poisson’s ratio, respectively; oRing ¼

ffiffi
½
p
�K=mR2 is the shell ring frequency; K ¼ Eh=ð1� m2Þ is the shell rigidity in

tension; D ¼ Eh3=12ð1� m2Þ is the cylindrical rigidity; a2 ¼ h2=ð12R2Þ is the thickness coefficient. All the matrices of
coefficients are expressed through the dimensionless values. The following dimensionless values are also common for all
the equations here: �m ¼ Rkm, �n ¼ Rkn are the dimensionless longitudinal and circumferential wavenumbers; �o ¼ o=oRing
is the dimensionless circular frequency. For the shell vibration shapes (Eq. (33)), the matrix of coefficients Kmn is as follows:

Kmn ¼ mo2
Ring

�m2
þ m� �n2

�mþ �m �n �m �m
�mþ �m �n �K22

�K23

�m �m �K23
�K33

0
BB@

1
CCA� �o2

0
BB@

1
CCA,

�K22 ¼ m� �m2
þ �n2

þ a2ð4m� �m2
þ �n2
Þ; m� ¼ ð1� mÞ=2,

�K23 ¼ �nþ a2 �nðð2� mÞ �m2
þ �n2
Þ; �K33 ¼ a2ð �m2

þ �n2
Þ2 þ 1. (A.1)

The stringers and frames are characterized by: Young’s moduli Es, Er; Poisson’s ratios ms, mr; masses per unit length ms, mr;
eccentricities zs, zr positive for the internal position; As,r, Is,r, Is;r

Z , Js,r are the areas, the principal moments, moments relative
to z-axis and the polar moments for cross-sections, respectively; Gs;r

¼ Es;r=ð2ð1þ ms;rÞÞ is the shear rigidity. The following
dimensionless values are used later:

�ms;r
�

ms;r

mds;r ; �zs;r
�

zs;r

R
; �rs;r

� 1� �zs;r ,

�E
s;r
�

Es;rAs;r

ds;rK
; �G

s;r
�

Gs;rJs;r

ds;rD
; �D

s;r
�

Es;rIs;r

ds;rD
,

Ds;r
Z �

Es;rIs;r
Z

ds;rD
; �J

s;r
�

Js;r

As;rR2
. (A.2)

For the stringer vibration shape (Eq. (40)) the matrix of coefficients is as follows:

Ks
m ¼ mo2

Ringð
�K

s
� �ms �o2 �M

s
Þ,

�K
s
¼

�E
s
�m2 0 �zs �E

s
�m3 0

0 �K
s
22 0 �K

s
24

�zs �E
s
�m3 0 �K

s
33 0

0 �K
s
24 0 �K

s
44

0
BBBBB@

1
CCCCCA;

�M
s
¼

1 0 �zs �m 0

0 �M
s
22 0 �M

s
24

�zs �m 0 �M
s
33 0

0 �M
s
24 0 �M

s
44

0
BBBBB@

1
CCCCCA,

�K
s
22 ¼ a2 �m2

ð �G
s
þ �rs2 �D

s
Z �m

2
Þ; �M

s
22 ¼ �r

s
þ �J

s
,

�K
s
24 ¼ a2 �m2

ð� �G
s
þ �rs �D

s
Z �z

s �m2
Þ; �M

s
24 ¼ �zs �rs

� �J
s
,

�K
s
33 ¼ �m4

ða2 �D
s
þ �zs2 �E

s
Þ; �M

s
33 ¼ 1þ �zs2 �m2

�K
s
44 ¼ a2 �m2

ð �G
s
þ �D

s
Z �z

s2 �m2
Þ; �M

s
44 ¼ �zs2

þ �J
s
. (A.3)

For the frame vibration shape (Eq. (45)) the matrix of coefficients is the following:

Kr
n ¼ mo2

Ringð
�K

r
� �mr �o2 �M

r
Þ,

�K
r
¼

�K
r
11 0 0 �K

r
14

0 �K
r
22

�K
r
23 0

0 �K
r
23

�K
r
33 0

�K
r
14 0 0 �K

r
44

0
BBBBB@

1
CCCCCA;

�M
r
¼

1 0 0 �z

0 �rr
��zr �r

r �n 0

0 ��zr �r
r �n 1þ �z2

r �n
2 0

�z 0 0 �z2
r þ

�Jr

0
BBBB@

1
CCCCA,
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�K
r
11 ¼ a2 �n2

ð �G
r
þ �D

r
Z �n

2
Þ; �K

r
14 ¼ a2 �n2

ð �D
r
Zð1þ �z

r �n2
Þ þ �G

r
ð1þ �zr

ÞÞ,

�K
r
22 ¼ �r

r2 �E
r
�n2; �K

r
23 ¼ �r

r �E
r
�nð1� �zr �n2

Þ,

�K
r
33 ¼ a2 �D

r
ð1� �n2

Þ2 þ �E
r
ð1� �zr �n2

Þ2; �K
r
44 ¼ a2ðð1þ �zr

Þ2 �G
r
�n2
þ �D

r
Zð1þ �z

r �n2
Þ2Þ. (A.4)

Appendix B. Connection of displacements and forces

The relation of the displacements and rotation of the stiffeners and of those of the shell along the stiffness is as follows:

wsðx; psÞ � ðus;vs;ws; ysRÞT ¼ ðu;v;w;w0yRÞT � wðx; psds
Þ, (B.1)

wrðpr ; yÞ � ður ;vr ;wr ; yrRÞT ¼ ðu;v;w;w0xRÞT � wðprdr ; yÞ. (B.2)

Here the stiffener rotation angles ys, yr are equal to the derivatives of the shell normal displacements in the respective
coordinates ðw0x;w

0
yÞ. The stringer displacements and rotation can be expressed through the shell generalized

displacements (U, V, W) as follows:

wsðx; psÞ ¼
X
a;b

X1
m¼1

X1
n¼1

Umn

Vmn

Wmn

knRWmn

0
BBB@

1
CCCA

cosðkmxÞ

sinðkmxÞ

sinðkmxÞ

sinðkmxÞ

0
BBBB@

1
CCCCA

sinðknpsds
Þ

� cosðknpsds
Þ

sinðknpsds
Þ

cosðknpsds
Þ

0
BBBB@

1
CCCCA. (B.3)

Taking into account that

cosðknpsds
Þ ¼ cosðpsbÞ;

sinðknpsds
Þ ¼ sn sinðpsbÞ;

sn ¼
ð�1Þnþ1; ba0;p;
0; b ¼ 0;p;

(
(B.4)

and comparing Eq. (B.3) with expansion (38) for the stringers, the generalized stringer displacements Ws
bm can be

expressed through the shell displacements Wmn as

Ws
bm ¼

X
n

snUmn

Vmn

snWmn

knRWmn

0
BBB@

1
CCCA ¼

X
n

sn 0 0

0 1 0

0 0 sn

0 0 knR

0
BBB@

1
CCCA

Umn

Vmn

Wmn

0
B@

1
CA �X

n

EnWmn. (B.5)

Here En is the matrix, of dimension 4�3, relating the vector of generalized displacements of the shell and the stringers.
Similarly the relation between generalized frame and shell displacements can be obtained:

Wr
an ¼

X
m

EmWmn, (B.6)

Em ¼

1 0 0

0 sm 0

0 0 sm

0 0 kmR

0
BBB@

1
CCCA; sm ¼

ð�1Þmþ1; aa0;p;
0; a ¼ 0;p:

(
(B.7)

Here Em indicates the matrix, of dimensions 4�3, relating the vector of generalized displacements of the shell and the
frame.

Now we find a relation of the surface forces of the stiffener responses and the discrete forces acting on the stiffeners.
These discrete forces can be transformed into the surface forces in a similar way to the plate case. Account for the equality
similar to Eq. (19):

dr
X
pr

sinðaprÞ

cosðaprÞ

 !
dðx� prdr

Þ ¼
X1
m¼1

sm sinðkmxÞ

�m cosðkmxÞ

 !
, (B.8)

ds
X
ps

sinðbpsÞ

cosðbpsÞ

 !
dðy� psds

Þ ¼
X1
m¼1

sn sinðknyÞ

�n cosðknyÞ

 !
, (B.9)

�m ¼
1; 0oaop; a ¼ 0;m ¼ 1;

2; a ¼ p; a ¼ 0;m41;

(
; �n ¼

1; 0obop; b ¼ 0;n ¼ 1;

2; b ¼ p; b ¼ 0;n41:

(
(B.10)

Note here, that �msm ¼ sm, �nsn ¼ sn.
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Hence the discrete function Ws
bðp

sÞ in Eq. (40) can be rewritten as a sum of continuous functions:

ds
X
ps

Ws
bðp

sÞdðy� psds
Þ ¼

X1
n¼1

sn sinðknyÞ

��n cosðknyÞ

sn sinðknyÞ

�n cosðknyÞ

0
BBBB@

1
CCCCA. (B.11)

The effect on the shell, fixed on the edges, of the distributed moment ms
yðx; yÞ is equivalent to the effect of an additional

distributed normal force �qms
yðx; yÞ=qy. Therefore the three components of stringer response to the shell forces qs can be

expressed through the discrete forces qds and the generalized forces Qds
bm as

qs �

qs
u

qs
v

qs
w

0
B@

1
CA ¼

qs
u

qs
v

qs1
w � qms

y=qy

0
BB@

1
CCA, (B.12)

ðqs
u; q

s
v;q

s1
w ;m

s
yR�1Þ ¼

X
ps

qdsðx; psÞdðy� psds
Þ

¼ ds
X
a;b

X1
m¼1

Qds
bmUs

mðxÞ
X
ps

Ws
bðp

sÞdðy� psds
Þ: (B.13)

Eqs. (32), (33), (39), (40), (B.11)–(B.13) give the relation between the vector of generalized stringer responses Q s
mn and

the forces Qds
bm through the Fn matrix:

Q s
mn ¼ FnQds

bm; Fn ¼

sn 0 0 0

0 �n 0 0

0 0 sn �nknR

0
B@

1
CA. (B.14)

The relation between the generalized frame responses Q r
mn and forces Qdr

an acting on the frames can be obtained in the
same way:

Q r
mn ¼ FmQdr

an; Fm ¼

�m 0 0 0

0 sm 0 0

0 0 sm �mkmR

0
B@

1
CA. (B.15)

Note that

Fn ¼ �nET
n; Fm ¼ �mET

m. (B.16)
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